Radio Frequency Identification - RFID Technical Specialist Competency Requirements

The Radio Frequency Identification Technical Specialist will have a working fundamental knowledge of electronics communication principles. This criteria can be found in the Associate Electronics Technician (CETa, http://www.eta-i.org/electronics.html#CETa) and other Communications area http://www.eta-i.org/electronics.html certification programs.

The following competencies are a listing of the knowledge and abilities necessary to perform configuration and maintenance of RFID hardware and software as an RFID Technical Specialist.

1.0 Introduction to Radio Frequency Identification (RFID) Fundamentals

- 1.1 Explain basic electrical theory and uses including:
 - 1.1.1 Ohms law
 - 1.1.2 Watts law
 - 1.1.3 Kirchhoff's law
- 1.2 Describe basic DC circuit concepts of series and parallel
- 1.3 Describe basic AC circuit concepts of RLC (resistive, inductive and capacitive) circuit
- 1.4 Describe basic semiconductors circuitry including:
 - 1.4.1 diodes
 - 1.4.2 transistors
 - 1.4.3 amplifiers
 - 1.4.4 oscillators
- 1.5 Explain electrical and network infrastructure site analysis
- 1.6 Identify symbols used in electronic circuitry and blueprints
- 1.7 Define RFID (Radio Frequency Identification) including:
 - 1.7.1 origin, history and early RFID uses:

1.7.1.1 tag

1.7.1.2 reader

- 1.7.2 the EPC (Electronic Product Code)
- 1.7.3 current RFID market awareness

2.0 SAFETY

- 2.1 Describe Radio Frequency (RF) safety protocols per industry standards
 - 2.1.1 Explain the FCC OET65 Bulletin
 - 2.1.2 Explain the IEEE/ANSI C-95 standard
- 2.2 Describe general safety guidelines:
 - 2.2.1 List the National Electrical Codes (NEC®) as they apply to RFID technology
 - 2.2.2 List Occupational Safety and Health Administration (OSHA) requirements for working with RFID technology
 - 2.2.3 List personal protection equipment (PPE) used in RFID work
 - 2.2.4 RFID power applications including:

2.2.4.1 AC power

2.2.4.2 Battery systems

2.2.4.3 Lock Out / Tag Out procedures

- 2.2.5 Describe safety measures used with tower and elevated surfaces
- 2.2.6 Describe grounding and surge/lightning protection safety measures
- 2.3 Explain how to protect components from Electrostatic Discharge (ESD)

3.0 RF Fundamentals Applied in RFID

- 3.1 Explain basic RF fundamental operating principles and terminology
- 3.2 Describe basic RF spectrum and propagation
- 3.3 Explain basic principles of radio communication
- 3.4 Explain RF modulation and demodulation to include:
 - 3.4.1 Transmitter modulation
 - 3.4.2 Receiver demodulation
 - 3.4.3 Receiver bandwidth must match the transmitter modulation scheme

- 3.5 Describe RFID digital modulation methods:
 - 3.5.1 ASK (amplitude-shift keying)
 - 3.5.2 FSK (frequency-shift keying)
 - 3.5.3 PSK (phase-shift keying)
- 3.6 Describe a site survey requirements:
 - 3.6.1 RF
 - 3.6.2 Physical
- 3.7 Describe RFID coverage area
- 3.8 Explain RFID Antenna:
 - 3.8.1 characteristics including:
 - 3.8.1.1 Tag Antennas
 - 3.8.1.2 Reader Antennas
 - 3.8.2 wave propagation
 - 3.8.3 field performance

4.0 Communication Methods and Protocol in RFID

- 4.1 Describe coupling including:
 - 4.1.1 inductive
 - 4.1.2 electromagnetic backscatter
 - 4.1.3 close loop or capacitive
- 4.2 Define collisions (contentions) including:
 - 4.2.1 Tag collisions
 - 4.2.2 Reader collisions
- 4.3 Describe anti-collision tree protocols:
 - 4.3.1 Tree-base
 - 4.3.2 Query tree
 - 4.3.3 Binary tree
- 4.4 Describe the TCP/IP (transmission control protocol/internet protocol) fundamentals:
 - 4.4.1 wired
 - 4.4.2 wireless
- 4.5 Define tag authentication
 - 4.5.1 Describe RFID tag forgery security countermeasures
 - 4.5.1.1 Define "skimming" and "cloning"
 - 4.5.2 Describe "denial of service" prevention including virus protection

5.0 Tag Characteristics

- 5.1 Describe passive tags including:
 - 5.1.1 BAPS (battery assisted passive tags)
 - 5.1.2 advantages and disadvantages of using passive tags
- 5.2 Describe active tags including:
 - 5.2.1 "Read / Write" tags
 - 5.2.2 advantages and disadvantages of using active tags
- 5.3 Describe active/passive tags/readers including:
 - 5.3.1 AVI (automated vehicle id) systems with or without transponders
- 5.4 Explain how tags are designed
- 5.5 Explain signal strengths pertaining to communication range including:
 - 5.5.1 reader to tag requirements
 - 5.5.2 tag to reader available strengths
- 5.6 Describe a Smart Label
- 5.7 Explain Tag Implementation

6.0 Fundamentals of Interrogator Communications

- 6.1 Describe how readers (interrogators) function in an RFID system
- 6.2 Define the Interrogation Zone
- 6.3 Explain the parameters of a Dense Interrogators Environment including:
 - 6.3.1 Deployment Environments
- 6.4 Explain Interrogator international power regulations
- 6.5 Explain how a host computer is connected to tag reader
 - 6.5.1 Describe common specific wired and wireless network interfaces

- 6.6 Explain how a Device Driver works
- 6.7 Explain the role Middleware and Edgeware has in RFID architecture including:
 - 6.7.1 software on the reader
 - 6.7.2 middleware used between reader and computer
- 6.8 Explain ONS (object naming service) and the role it plays in an enterprise RFID System
- 6.9 Describe basic programming techniques including:
 - 6.9.1 Basic C structure
 - 6.9.2 XML namespace

7.0 RFID System Design Selection and Installation

- 7.1 Describe which Frequency selection is used including:
 - 7.1.1 LF
 - 7.1.2 HF
 - 7.1.3 UHF
- 7.2 Explain the applications of selection and installation/configurations including:
 - 7.2.1 Tag types
 - 7.2.2 Reader/Interrogator types
 - 7.2.3 Antenna types
 - 7.2.4 power distribution including:
 - 7.2.4.1 power supply
 - 7.2.4.2 cable/wiring considerations
 - 7.2.5 RFID peripherals

8.0 RFID Standards and Regulations

- 8.1 Define the EPC (Electronics Product Code)
- 8.2 Describe how EPCglobal Network and GS1 incorporate sharing information including:
 - 8.2.1 ONS
 - 8.2.2 EPC Discovery services
 - 8.2.3 EPC Information services
 - 8.2.4 EPC Security services
- 8.3 Describe common ISO Standards as # related to RFID including:
 - 8.3.1 18000 series (air interface frequency standards)
 - 8.3.2 11784 (tag data structure)
 - 8.3.3 11785 (air interface protocol a.i.p.)
 - 8.3.4 14443 (proximity systems definitions for a.i.p.tags payment systems)
 - 8.3.5 15693 (vicinity cards)
 - 8.3.6 18046 (tag and interrogator performance test methods)
 - 8.3.7 refer to the many other RFID related standards
- 8.4 Define the GEN 1 and GEN 2 RFID standards differences
- 8.5 Define the Class 0,1,2,3,4,5 tags
- 8.5 Define SSCC (Serial Shipping Container Code)
- 8.6 Define EDI (electronic data interchange) Transaction including:
 - 8.6.1 ASN (Advanced Shipping Notice)

9.0 Additional Instrumentation Used with RFID Systems

- 15.1 Describe how to use a real time spectrum analyzer
- 15.2 Describe how to use an oscilloscope
- 15.3 Describe how to use voltage/ohm meters
- 15.4 Describe how to use field strength meters

10.0 Troubleshooting an RFID System

- 14.1 Explain procedures used in Tag Data Management
- 14.2 Explain how to assess Readability and Reliability issues
- 14.3 Describe procedures to resolve Environmental Tag damage
- 14.4 Define SLRRP (Simple Lightweight RFID Reader Protocol)
- 14.5 Describe procedures used in RFID security/privacy applications

End of RFID Technician Specialist Competencies Listing

Find an ETA® Test Site

http://www.eta-i.org/testing.html

Additional Suggested Study Materials and Resources:

RFID Essentials; Glover/Bhatt; ISBN 978-0596009441; O'Reilly Media; 2006

The RF in RFID: Passive UHF RFID in Practice, 2E; Dobkin; ISBN 978-0123945839; Newnes; 2012 RFID: MIFARE and Contactless Cards in Application; Schalk/Bienert; ISBN 978-1907920141; Elektor; 2013

RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, RFID and Near-Field Communication, 3E; Finkenzeller/Müller; ISBN 978-0470695067; Wiley; 2010

RFIDs, Near-Field Communications, and Mobile Payments: A Guide for Lawyers; Hughes/Middlebrook/Jones; ISBN 978-1627221252; American Bar Assc.; 2014

RFID Field Guide; Bhuptani/Moradpour; ISBN 978-131853553; Sun Microsystems-Prentice Hall; 2005

RFID for Dummies; Sweeney II; ISBN 978-0764579103; For Dummies; 2005

RFID: Radio Frequency Identification; Shepard; ISBN 978-0071442992; McGraw-Hill; 2004

RFID: Applications, Security and Privacy; Garfinkel/Rosenberg; ISBN 978-0321290960; Addison-Wesley; 2005

Security in RFID and Sensor Networks; Zhang & Kitsos, editors; ISBN 978-1-4200-6839-9; CRC Press: 2009

See more Texts listed at the end of the CETa, GCT1, & GCT2 competency listings...

https://msdn.microsoft.com/en-us/library/dd352557.aspx

http://electronics.howstuffworks.com/gadgets/high-tech-gadgets/rfid.htm

http://www.radio-electronics.com/info/wireless/radio-frequency-identification-rfid/iso-epcglobal-iecstandards.php

http://www.rfidjournal.com/articles/view?1335

http://www.edi-services.com/856-advanced-ship-notice-elements.htm

http://transition.fcc.gov/Bureaus/Engineering Technology/Documents/bulletins/oet65/oet65b.pdf

RFID - Certification Program Subject Matter Advisory Board:

Ira M. Wiesenfeld, P.E., CETsrIWA Technical Services.; (TX)iwiesenfel@aol.comEd Kirkpatrick, PVI, CSSETA International; (IN)ekirkpatrick@eta-i.orgAndre Smalling, CETNYTA; (NY)gent2001@hotmail.com

Richard W. Booth, FOT Tucson; (AZ) richard.w.booth@gmail.com
Alvin S, Kohr Dallas; (TX)

John J, Zielinski, CETma S P C; (NY) <u>johnzielinski0@gmail.com</u>
Dr. Ron Milione, CETma PSEG; (NY) <u>ronmilione@yahoo.com</u>

ETA certification programs are accredited through the ICAC, complying with the ISO/IEC 17024 standard.

